Cortically Inspired Sensor Fusion Network for Mobile Robot Heading Estimation
نویسندگان
چکیده
All physical systems must reliably extract information from their noisily and partially observable environment, such as distances to objects. Biology has developed reliable mechanisms to combine multi-modal sensory information into a coherent belief about the underlying environment that caused the percept; a process called sensor fusion. Autonomous technical systems (such as mobile robots) employ compute-intense algorithms for sensor fusion, which hardly work in real-time; yet their results in complex unprepared environments are typically inferior to human performance. Despite the little we know about cortical computing principles for sensor fusion, an obvious difference between biological and technical information processing lies in the way information flows: computer algorithms are typically designed as feedforward filter-banks, whereas in Cortex we see vastly recurrent connected networks with intertwined information processing, storage, and exchange. In this paper we model such information processing as distributed graphical network, in which independent neural computing nodes obtain and represent sensory information, while processing and exchanging exclusively local data. Given various external sensory stimuli, the network relaxes into the best possible explanation of the underlying cause, subject to the inferred reliability of sensor signals. We implement a simple test-case scenario with a 4 dimensional sensor fusion task on an autonomous mobile robot and demonstrate its performance. We expect to be able to expand this sensor fusion principle to vastly more complex tasks.
منابع مشابه
A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملOlfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system...
متن کامل